NOTE ON THIE CERATHEDTE. Ey THEODORE GILL.

Since the publication of the third volume of Giinther's "Catalogne of the Fishes in the British Mnseum" (1861), and the present author's Note on the Pediculati (1863), the then monotspic family of Ceratiider has received notable additious, and this year (1878) one genus or rather type of hitherto doubtful character has been substantiated, and two new allied ones added. All the representatives of the group appear to be inhabitants of the deep or open seas. The relations of the genera seem to be approximately as follows:-

Synopsis.

1a. Mouth moderate; cephalic spine with its basal element exserted and continuons with the distal ; pyloric cœea developed (2).
2. A second dorsal spine typically developed; month with the cleft subvertical; 1 st D. with few rays ; branchiee in $2 \frac{1}{2}$ pairs ; branchial arches unarmed; skin with seattered spinigerous sentellæ.
. Ceratine.
$3 a$. A second dorsal spine developed, and two fleshy tubercles behind it ; pectorals with nearly 20 slender rays.
... Ceratias.
3b. No second dorsal'spine developed, but two fleshy claviform tubercles existing as in Ceratias ; pectorals with about 10 slender rays.... Mancalias. 1b. Month moderate ; cephalic spine with its basal element subcutaneous, procumbent, and at right or acnte angle with the distal ; pyloric cœca none.
$2 a$. A second dorsal spine developed; branchiæ in $2 \frac{1}{2}$ pairs; branchial arches unarmed; body naked.
3. Body and head compressed ; mouth with the cleft nearly horizontal, aud maudibular articulation behind eye......................... Onentodine.

Oneirodes.
26. No second dorsal spine developed; branchix in $\frac{1}{2} 2 \frac{\pi}{2}$ pairs; branchial arches armed with dentigerous tubercles; body with scattered tutercular scutellx.
$3 a$. Body and head compressed ; mouth with the cleft oblique; mandibular articulation under or behind eye.................... Himantolopimes.
$4 a$. Body oblong oval ; dorsal fin with about 9 rays and pectoral wi h about 12 ? .. Himantolophus. 4b. Body short oval; dorsal fin with 4 rays and pectoral with abont 17 .

Corynolophus.
3b. Borly and head depressed; mouth with the cleft vertical or inclined forwards ; mandibular articulation under or in advance of snont

Egeonicithiyine.
Jegaonichthys.
1c. Month enormons; (cephalic spine with its basal element subcutancous, procuubent, and at an acute angle with its distal?).
2. No second dorsal spine developed. Mouth with the cleft subvertical. 1st D. with about 14 rays; branchix in $2 \frac{1}{2}$ pairs; branchial arches un armed; skiu naked... Melanocetinz..

Melanocetus.

CERATIIN无.

ceratias.

Ce:atias, Rroyer, Naturhist. Tidskrift, 2. række, b. 1, p. 639, 1844.
Type: C. Holbülli Kroyer.
Deep sea off Greenland.

MANCALIAS.*

Mancalias, Gill, Proc. U. S. Nat. Mus., v. 1, pp. 227, 228, 1878.
Type: M. uranoscopus = Ceratias uranoscopus, Mwray, Wyrille Thompson, Voyage of the Challenger, v. 2, p. 67, with fig., 1878. (Am. ed.)
Atlantic Ocean (taken at a depth of 2,400 fathoms), between Canary and Cape Verde Islands.

ON EIRODIN AE.

ONEIRODES.

Oneirodes, Lütken, Overs. over d. K. Danske Vidensk. Sclsk. Forhandl., 1871, pp. je-74 (fr. pp. 9-18).
Type: O. Eschrichtii Liitken.
Deep sea off Greenland.

HIMANTOLOPHIN \nrightarrow.

HIMANTOLOPHUS.

Himantolophus, Reinhardt, K. Danske Vidensk. Selsk. Nat. og Math. Aflı, 4. rékke, จ. 7, p. 74, 1837 ; Liuthen, 1878.
Type: H. Grœnlandicus Reinhardt.
Deep sea off Greenland (adults).

CORYNOLOPHUS.

Type : Corynolophus Reinhardtii $=$ Himantolophus Reinhardtii Lütken.
Deep sea off Greeuland (adult), and open sea between Africa and America (foung)?

AG EONICHTHYINAE。

压GEONICHTHYS.

Egxouichthys, T. E. Clarke, Trans. New Zealand Institute, v. 10, p. 245, 1878.
Type: Æ. Appellii T. E. Clarke.
Deep sea off the island of New Zealand.

MELA NOCETINE.

MÉLANOCETUS.

Melanocetus, Günther, Proc. Zool. Soc. London, 1864, p. 301.
Type: Melanocetus Johnsonii Günther.
Deep sea off the island of Madeira.
In the words of Liitken, \dagger " the general form and the physiognomy especially are quite similar in the [known] genera; common to all is, also, the absence of ventral fins, of the lateral line and its ramifications, of the air bladder, of the psendobranchix, and of the teeth of the lower pharyngeal and palatine bones $\ddagger \ddagger$ the smallness of the eyes and of the pectoral

* Mancalias, from mancus, defective, with a quasi-climiuntive termination, to correspond with Ceratias. The single specimen obtaincd was only 90 millimetres long.
† Vidensk. Selsk. Skr., 5. rekke, Naturv. og Math. Afd., 11 te Bd. V, fr. tr., p. 343.
\ddagger In Melanocetus, according to Günther, " the vomer is armed with a transverse series of single teeth, and extends across the whole width of the roof of the mouth; the palatine and pterygoid teeth are sitnated at some distance behind the vomer, and form two bundles irregular in form"; but, according to Liitken (and since admitted by Giinther), "the so-called palatine and pterygoid teeth" "belong in reality to the upper pharyngeals."
fins, the short peduncles of the latter, the conformation of the teeth, the black color, the number of brimchiostegal rays (6) as well as of the rays of the anal (4) and caudal (9), and the half-spongy consistence of the skeleton are also, apparently, characters common to all the [knowu] genera."

Another character shared in common by all the species, and at least as noteworthy as several of those thus enumerated by Dr Liitken, is the differentiatiou in the color of the extremity of the bulbiform termination of the ceplalic spine. In all the known species (unless Melanocetus may be excepted), the apical portion or elements of the bulb are of a grayish or whitish color, and thereby quite abruptly differentiated from the rest of the spine, which is of a black color. Some special significance is probably inberent in this characteristic, and it is quite possible, if not probable, that the difference of color is expressive of a differentiation in histological structure, and that the grayish portions are phosphorescent. When the complicated "angling" apparatus of the fishes of this group is considered, it will be thought not unlikely that their power of attraction should be enhanced by a luminosity which may excite the attention or curiosity of their prey, and still more strongly tempt them within the easy reach of their capacions mouths. It is certainly scarcely likely that the characteristic in question, manifested as it is in such widely diverse types, should be a simple immaterial color feature, destitute of other siguificance. The not few pelagic and deep-sea animals that exhibit phosphorescence enhaace the probability of the attribute suggested. The verity of the suggestion must, however, be established by histological and physiological data. It can only now be assumed that there is a teleological import in the differentiation of color, and that it is more probable that the whitish area has a phosphorescent property than that it simply serves as a relief for the filaments of the bulb. Especially is this more probable in view of the great depths which the species inhabit, and the consequeutly limited quantity of light which they enjoy. That the provision, whatever it may be, is an effective one, is apparent from the rariety of the forms already discovered, and it seems probable that the family is not only quite characteristic of, but well represented in, the depths of the ocean.

As to Melanocetus, it is simply said, by Dr. Giinther, to have the cephalic filament "more thau half as high as the head, and dilated into a small lamella at its extremity". The "lamelliform" character of the ditatation at least requires confirmation, and it is not very unlikely that the dilatation will be found not to be thin or compressed to such an exteut as to be entitled to the desiguation of "lamella", and that the extremity will be ascertained to be whitish. The mode of articulation of the cephalic spine also requires investigation. Dr. Liitken has corrected Dr. Guinther's error of mistaking pharyngeal teeth for palatine and ptersgoid, but has not elucidated the points indicated.

The several recoguized genera are mostly widely differentiated,
and represent as many as fire groups, distinguished by characters which are generally indicative of at least family value; but the close agreement which they otherwise exhibit among themselves forbids separation to that extent, and yet the groups seem, at any rate, to demand distinction as sub-families. We rould scarcely be prepared to believe that two genera, distinguished, one by a compressed head, and the other by a depressed head, could be so nearly related as are apparently Himantolophus and AEgaonichithys, but the modifications in question in these genera are probably expressive of the compression on the one hand, and the depression and bowing outwards on the other, at the hyomandibular articulations, and not of any fundamental osteological modifications.

With regard to the Himantolophines, there is occasion for difference of opinion, and it may be that the Himantolophus Groulandicus and Rein. hardtii do not even differ specifically. The statements by Reinhardt as to the characteristics of the former are, however, unequivocal, and, as he appears to have bcen a careful and exact observer, they are probably correct, while those of Liitken regarding the latter are unquestionable. In view of the mode of variation in the family, the differences noted seem to the present author to be indicative of more than specific value, and consequently the respective species are considered as distant generic types. There is a singular agreement between the type named Corynolophus and the Agcoonichthys of the New Zealand seas in the radial formula; and while such agreement might tend to throw doubts on the actual differences supposed to exist between Corynolophus and Himantolophus, it tends far to confirm the generic valne of the differences, if they really exist. It may eren be that the two genera are not as closely related as are Corynolophus and Agcconichthys, but such is scarcely probable.

The habitats given must be regarded simply as the expressions of our present state of knowledge, as it is more than probable that the ranges of most of the species are quite extensive in the bathmic zone in which they dwell. It is also probable that the number of representatives of the family will be considerably increased hereafter. A most interesting coincidence is the discovery, in the same year, of the closely related Himantolophince and Agoconichthyince at antipodal localities. There are already, too, indications of sereral other types, apparently members of the family, but too imperfectls known to be introduced into the system. The present state of our knowledge in respect to such imperfectly known forms is well summarized by Dr. Liitken in the following words:-
"Les collections de petits poissons pêchés en haute mer, du Musée de Copenhague, renferment en outre quelques Lophioïdes apodes d'une taille plus petite eucore ($5-S^{m m}$), trouvés en plein Océan Atlantique, qui annoncent peut-être l'existence d'une troisième espèce d'Himantolophe ou d'un genre voisin, et diffèrent de l'Himantolophus Reinhardti par le nombre des rayons (D:6;A:6; C:10), probablement aussi par la
taille moindre des adnltes, puisqne quelques-uns de ces embryons offrent déjà un rudiment de huppe frontale analogue à celle que possède le jeane Lophioïde, dépourvu nou-seulement de ventrales, mais aussi de dorsale et d'anale, indiquant ainsi, selon toute probabilité, l'existence d'un type générique nouveau, que l'on ne tardera point à décourrir ì l'état adulte, à mesure que l'étude justement commencée de la faune abyssale de l'océan aura fait de nouveaux progrès. Peut-être aussi que le "Ceratias uranoscopus" annoncé comme dragué par l'expéditioni si fameuse dn "Challenger" à la profondeur surprenante de 2400 brasses, entre les îles Canaries et du Cap Vert, sera reconnu comme formant mu geure à part-à en juger par une photographie (reproduite en xylographie dams "The Atlantie" de Sir Ch. Wyville-Thomson, II, p. 69), qui m'a été communiquée arec la plus grande obligeance par feu M. Willemoës-Suhnu, dont la mort prématurée a été tant déplorée par ses amis et par ceux de la science.
"On trouvera dans le rapport préliminaire de M. Murray (Proc. Roy. Soc., xxir, p. 590-9t) des renseignements sur les profondeurs des hnit localités où ont été dragues, lors du royage du "Challenger" des Lophioïdes bathyphiles, en partio probablement noureanx pour la science. Dans son rapport préliminaire sur les dragnages exécutés, en 1878, dans les profondeurs du Golfe de Mexique, M. Al. Agassiz fait mention d'un poisson resemblant à un tétard enorme ì tête roule, gigantesque, cartilagineuse et sans yeux, et de quelques autres à tête allongée et deprimée, aux jeux très petits et à filaments enormes peudant des extremités des rayons des nageoires pectorales et caudal."

NOTE ON TEE MAETHELDE.

By THEODORE GILL.

Since the publication of the great systematic works on fishes, the family of Maltheidce has received a couple of notable additions which furnish a good idea of the range of variation occurring in the group and at the same time fully corroborate the justuess of the segregation of its members under two distinct families. The distinctions thus apparent are indicated in the following analysis. All the genera are monotypic except Malthe.

MALTHEIDÆ.

1a. Body with disk cordiform and caudal portion stout; frontal region elevated, and snout more or less produced or attenuated forwaids............ Maltieinis. Malthe.
1b. Body with disk subcirenlar or expanded backwards and caudal portion slender; froutal region depressed, and snont rounded and obtuse in front.

Halieuteina.
2a. Palate edentulous; rostral teutacle developed ; carpus exserted from common membrane.
$3 a$. Disk subtriangular ; mouth small ; branchiæ reduced to 2 pairs (I, 0; II, 1-1; III, 1-1; IV, 0-0)... Dibranchus.

